Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Med Virol ; 95(4): e28688, 2023 04.
Article in English | MEDLINE | ID: covidwho-2256021

ABSTRACT

Viral metagenomics has been extensively applied for the identification of emerging or poorly characterized viruses. In this study, we applied metagenomics for the identification of viral infections among pediatric patients with acute respiratory disease, but who tested negative for SARS-CoV-2. Twelve pools composed of eight nasopharyngeal specimens were submitted to viral metagenomics. Surprisingly, in two of the pools, we identified reads belonging to the poorly characterized Malawi polyomavirus (MWPyV). Then, the samples composing the positive pools were individually tested using quantitative polymerase chain reaction for identification of the MWPyV index cases. MWPyV-positive samples were also submitted to respiratory virus panel testing due to the metagenomic identification of different clinically important viruses. Of note, MWPyV-positive samples tested also positive for respiratory syncytial virus types A and B. In this study, we retrieved two complete MWPyV genome sequences from the index samples that were submitted to phylogenetic inference to investigate their viral origin. Our study represents the first molecular and genomic characterization of MWPyV obtained from pediatric patients in South America. The detection of MWPyV in acutely infected infants suggests that this virus might participate (coparticipate) in cases of respiratory symptoms. Nevertheless, future studies based on testing of a larger number of clinical samples and MWPyV complete genomes appear to be necessary to elucidate if this emerging polyomavirus might be clinically important.


Subject(s)
COVID-19 , Polyomavirus Infections , Polyomavirus , Respiratory Tract Infections , Viruses , Infant , Child , Humans , Metagenomics , Brazil/epidemiology , Malawi/epidemiology , Phylogeny , SARS-CoV-2 , Polyomavirus Infections/epidemiology , Polyomavirus/genetics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
2.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: covidwho-2250436

ABSTRACT

São Paulo is the financial center of Brazil, with a population of over 12 million, that receives travelers from all over the world for business and tourism. It was the first city in Brazil to report a case of COVID-19 that rapidly spread across the city despite the implementation of the restriction measures. Despite many reports, much is still unknown regarding the genomic diversity and transmission dynamics of this virus in the city of São Paulo. Thus, in this study, we provide a retrospective overview of the COVID-19 epidemic in São Paulo City, Southeastern, Brazil, by generating a total of 9995 near-complete genome sequences from all the city's different macro-regions (North, West, Central, East, South, and Southeast). Our analysis revealed that multiple independent introduction events of different variants (mainly Gamma, Delta, and Omicron) occurred throughout time. Additionally, our estimates of viral movement within the different macro-regions further suggested that the East and the Southeast regions were the largest contributors to the Gamma and Delta viral exchanges to other regions. Meanwhile, the North region had a higher contribution to the dispersion of the Omicron variant. Together, our results reinforce the importance of increasing SARS-CoV-2 genomic monitoring within the city and the country to track the real-time evolution of the virus and to detect earlier any eventual emergency of new variants of concern that could undermine the fight against COVID-19 in Brazil and worldwide.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Brazil/epidemiology , Latin America , Retrospective Studies
3.
Infect Genet Evol ; 108: 105405, 2023 03.
Article in English | MEDLINE | ID: covidwho-2236360

ABSTRACT

The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Genomics , Databases, Factual , Mutation , Genome, Viral
4.
BMC Public Health ; 23(1): 15, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2196172

ABSTRACT

BACKGROUND: Brazil has been dramatically hit by the SARS-CoV-2 pandemic and is a world leader in COVID-19 morbidity and mortality. Additionally, the largest country of Latin America has been a continuous source of SARS-CoV-2 variants and shows extraordinary variability of the pandemic strains probably related to the country´s outstanding position as a Latin American economical and transportation hub. Not all regions of the country show sufficient infrastructure for SARS-CoV-2 diagnosis and genotyping which can negatively impact the pandemic response. METHODS: Due to this reason and to disburden the diagnostic system of the inner São Paulo State, the Butantan Institute established the Mobile Laboratory (in Portuguese: LabMovel) for SARS-CoV-2 testing which started a trip of the most important "hotspots" of the most populous Brazilian region. The LabMovel initiated in two important cities of the State: Aparecida do Norte (an important religious center) and the Baixada Santista region which incorporates the port of Santos, the busiest in Latin America. The LabMovel was fully equipped with an automatized system for SARS-CoV-2 diagnosis and sequencing/genotyping. It also integrated the laboratory systems for patient records and results divulgation including in the Federal Brazilian Healthcare System. RESULTS: Currently,16,678 samples were tested, among them 1,217 from Aparecida and 4,564 from Baixada Santista. We tracked the delta introductio in the tested regions with its high diversification. The established mobile SARS-CoV-2 laboratory had a major impact on the Public Health System of the included cities including timely delivery of the results to the healthcare agents and the Federal Healthcare system, evaluation of the vaccination status of the positive individuals in the background of exponential vaccination process in Brazil and scientific and technological divulgation of the fieldwork to the most vulnerable populations. CONCLUSIONS: The SARS-CoV-2 pandemic has demonstrated worldwide the importance of science to fight against this viral agent and the LabMovel shows that it is possible to integrate researchers, clinicians, healthcare workers and patients to take rapid actions that can in fact mitigate this and other epidemiological situations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Brazil/epidemiology , Pandemics/prevention & control , Vulnerable Populations
5.
Viruses ; 14(9)2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2071822

ABSTRACT

The authors hereby request the inclusion of two authors (Olivia Teixeira and Maria Cristina Nonato) in the recently published article in Viruses entitled "Nucleocapsid (N) gene mutations of SARS-CoV-2 can affect real-time RT-PCR diagnostic and impact false-negative results" [...].

6.
Viruses ; 14(10)2022 09 29.
Article in English | MEDLINE | ID: covidwho-2066546

ABSTRACT

From a country with one of the highest SARS-CoV-2 morbidity and mortality rates, Brazil has implemented one of the most successful vaccination programs. Brazil's first model city vaccination program was performed by the CoronaVac vaccine (Sinovac Biotech) in the town of Serrana, São Paulo State. To evaluate the vaccination effect on the SARS-CoV-2 molecular dynamics and clinical outcomes, we performed SARS-CoV-2 molecular surveillance on 4375 complete genomes obtained between June 2020 and April 2022 in this location. This study included the period between the initial SARS-CoV-2 introduction and during the vaccination process. We observed that the SARS-CoV-2 substitution dynamics in Serrana followed the viral molecular epidemiology in Brazil, including the initial identification of the ancestral lineages (B.1.1.28 and B.1.1.33) and epidemic waves of variants of concern (VOC) including the Gamma, Delta, and, more recently, Omicron. Most probably, as a result of the immunization campaign, the mortality during the Gamma and Delta VOC was significantly reduced compared to the rest of Brazil, which was also related to lower morbidity. Our phylogenetic analysis revealed the evolutionary history of the SARS-CoV-2 in this location and showed that multiple introduction events have occurred over time. The evaluation of the COVID-19 clinical outcome revealed that most cases were mild (88.9%, 98.1%, 99.1% to Gamma, Delta, and Omicron, respectively) regardless of the infecting VOC. In conclusion, we observed that vaccination was responsible for reducing the death toll rate and related COVID-19 morbidity, especially during the gamma and Delta VOC; however, it does not prevent the rapid substitution rate and morbidity of the Omicron VOC.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Brazil/epidemiology , Phylogeny , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
7.
Viruses ; 14(7)2022 07 05.
Article in English | MEDLINE | ID: covidwho-1917799

ABSTRACT

Our effort in SARS-CoV-2 genomic surveillance in Brazil has detected the Alpha Variant of Concern with a predominance higher than 75% in the population of Ilhabela island (São Paulo State) at a time when the Gamma VOC was already predominating the mainland raised concerns for closer surveillance on this island. Therefore, we intensified the surveillance for 24 weeks by generating data from 34% of local positive cases. Our data show that the patterns of VOC predominance dynamics and infection rates were in general distinct from the mainland. We report here the first known case of Alpha predominance in a Brazilian population, a delay greater than 3 months for the Gamma to dominate the previous variants compared to the mainland, and a faster dispersion rate of Gamma and Delta VOCs compared to the mainland. Phylogenetic analysis revealed the SARS-CoV-2 transmission dynamics in Ilhabela were characterized by multiple independent introduction events of Gamma and Delta, with a few events of Alpha introduction, two of them followed by community transmission. This study evidenced the peculiar behavior of SARS-CoV-2 variants in an isolated population and brought to light the importance of specific programs for SARS-CoV-2 genomic surveillance in isolated populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , Phylogeny , SARS-CoV-2/genetics
8.
Virus Res ; 315: 198785, 2022 07 02.
Article in English | MEDLINE | ID: covidwho-1860141

ABSTRACT

Brazil ranks as third in terms of total number of reported SARS-CoV-2 cases globally. The COVID-19 epidemic in Brazil was characterised by the co-circulation of multiple variants as a consequence of multiple independent introduction events occurring through time. Here, we describe the SARS-CoV-2 variants that are currently circulating and co-circulating in the country, with the aim to highlight which variants have driven the different epidemic waves. For this purpose, we retrieved metadata information of Coronavirus sequences collected in Brazil and available at the GISAID database. SARS-CoV-2 lineages have been identified along with eleven variants, labelled as VOCs (Alpha, Gamma, Beta, Delta and Omicron) VOIs (Lambda and Mu) VUMs (B.1.1.318) and FMVs (Zeta, Eta and B.1.1.519). Here we show that, in the Brazilian context, after 24 months of sustained transmission and evolution of SARS-CoV-2, local variants (among them the B.1.1.28 and B.1.1.33) were displaced by recently introduced VOCs firstly with the Gamma, followed by Delta and more recently Omicron. The rapid spread of some of those VOCs (such as Gamma and Omicron) was also mirror by a large increase in the number of cases and deaths in the country. This in turn reinforces that, due to the emergence of variants that appear to induce a substantial evasion against neutralizing antibody response, it is important to strengthen genomic effort within the country and how vaccination still remains a critical process to protect the vulnerable population, still at risk of infection and death.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
J Med Virol ; 94(7): 3394-3398, 2022 07.
Article in English | MEDLINE | ID: covidwho-1844084

ABSTRACT

Delta VOC is highly diverse with more than 120 sublineages already described as of November 30, 2021. In this study, through active monitoring of circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants in the state of São Paulo, southeast Brazil, we identified two emerging sublineages from the ancestral AY.43 strain which were classified as AY.43.1 and AY.43.2. These sublineages were defined by the following characteristic nonsynonymous mutations ORF1ab:A4133V and ORF3a:T14I for the AY.43.1 and ORF1ab:G1155C for the AY.43.2 and our analysis reveals that they might have a likely-Brazilian origin. Much is still unknown regarding their dissemination in the state of São Paulo and Brazil as well as their potential impact on the ongoing vaccination process. However, the results obtained in this study reinforce the importance of genomic surveillance activity for timely identification of emerging SARS-CoV-2 variants which can impact the ongoing SARS-CoV-2 vaccination and public health policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , COVID-19 Vaccines , Genomics , Humans , SARS-CoV-2/genetics
10.
Virus Evol ; 8(1): veac024, 2022.
Article in English | MEDLINE | ID: covidwho-1774420

ABSTRACT

The coronavirus disease 2019 (COVID-19) epidemic in Brazil was driven mainly by the spread of Gamma (P.1), a locally emerged variant of concern (VOC) that was first detected in early January 2021. This variant was estimated to be responsible for more than 96 per cent of cases reported between January and June 2021, being associated with increased transmissibility and disease severity, a reduction in neutralization antibodies and effectiveness of treatments or vaccines, and diagnostic detection failure. Here we show that, following several importations predominantly from the USA, the Delta variant rapidly replaced Gamma after July 2021. However, in contrast to what was seen in other countries, the rapid spread of Delta did not lead to a large increase in the number of cases and deaths reported in Brazil. We suggest that this was likely due to the relatively successful early vaccination campaign coupled with natural immunity acquired following prior infection with Gamma. Our data reinforce reports of the increased transmissibility of the Delta variant and, considering the increasing concern due to the recently identified Omicron variant, argues for the necessity to strengthen genomic monitoring on a national level to quickly detect the emergence and spread of other VOCs that might threaten global health.

11.
Viruses ; 13(12)2021 12 10.
Article in English | MEDLINE | ID: covidwho-1572657

ABSTRACT

The current COVID-19 pandemic demands massive testing by Real-time RT-PCR (Reverse Transcription Polymerase Chain Reaction), which is considered the gold standard diagnostic test for the detection of the SARS-CoV-2 virus. However, the virus continues to evolve with mutations that lead to phenotypic alterations as higher transmissibility, pathogenicity or vaccine evasion. Another big issue are mutations in the annealing sites of primers and probes of RT-PCR diagnostic kits leading to false-negative results. Therefore, here we identify mutations in the N (Nucleocapsid) gene that affects the use of the GeneFinder COVID-19 Plus RealAmp Kit. We sequenced SARS-CoV-2 genomes from 17 positive samples with no N gene detection but with RDRP (RNA-dependent RNA polymerase) and E (Envelope) genes detection, and observed a set of three different mutations affecting the N detection: a deletion of 18 nucleotides (Del28877-28894), a substitution of GGG to AAC (28881-28883) and a frameshift mutation caused by deletion (Del28877-28878). The last one cause a deletion of six AAs (amino acids) located in the central intrinsic disorder region at protein level. We also found this mutation in 99 of the 14,346 sequenced samples by the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants, demonstrating the circulation of the mutation in Sao Paulo, Brazil. Continuous monitoring and characterization of mutations affecting the annealing sites of primers and probes by genomic surveillance programs are necessary to maintain the effectiveness of the diagnosis of COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/isolation & purification , Brazil/epidemiology , COVID-19/epidemiology , Coronavirus RNA-Dependent RNA Polymerase/genetics , DNA Primers , False Negative Reactions , Genome, Viral/genetics , Humans , Mutation , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
12.
Virus Res ; 308: 198643, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1537116

ABSTRACT

The SARS-CoV-2 alpha VOC (also known as lineage B.1.1.7) initially described in the autumn, 2020 in UK, rapidly became the dominant lineage across much of Europe. Despite multiple studies reporting molecular evidence suggestive of its circulation in Brazil, much is still unknown about its genomic diversity in the state of São Paulo, the main Brazilian economic and transportation hub. To get more insight regarding its transmission dynamics into the State we performed phylogenetic analysis on all alpha VOC strains obtained between February and August 2021 from the Sao Paulo state Network for Pandemic Alert of Emerging SARS-CoV-2 variants. The performed phylogenetic analysis showed that most of the alpha VOC genomes were interspersed with viral strains sampled from different Brazilian states and other countries suggesting that multiple independent Alpha VOC introductions from Brazil and overseas have occurred in the São Paulo State over time. Nevertheless, large monophyletic clusters were also observed especially from the Central-West part of the São Paulo State (the city of Bauru) and the metropolitan region of the São Paulo city. Our results highlight the Alpha VOC molecular epidemiology in the São Paulo state and reinforce the need for continued genomic surveillance strategies for the real-time monitoring of potential emerging SARS-CoV-2 variants during the ever-growing vaccination process.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2/genetics , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Genomics , Humans , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL